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Abstract

Multicomponent contaminant transport models in groundwater are typically based on
assumptions of local geochemical equilibrium on the grid scale. In heterogenous systems
there may be significant coupling between transport processes and geochemical equilib-
rium at smaller than grid block scale. When these processes are upscaled to grid scale,
geochemical evolution may take on a kinetic character. We have termed this upscaled
kinetic behaviour as pseudo-kinetics and illustrate it through some examples at the pore
and aquifer scales.

1. INTRODUCTION

When modelling multicomponent contaminant transport in groundwater, it is common
to assume geochemical equilibrium. Widely used models making this assumption include
PHREEQC [Parkhurst and Appelo, 1999] and its two-dimensional relative PHAST. Most
users unquestioningly accept the equilibrium assumption - but does it really apply? This
paper addresses this question and shows that when equilibrium geochemical and transport
processes are coupled at the small scale, then a macroscopic concentration is often not at
equilibrium, where the large scale concentration is defined as an average of smaller scale
values.
When we write the contaminant transport equation, there is an implicitly assumed
averaging scale in the governing equation because concentration is a macroscopic variable
that is defined over a control volume. That control volume can be defined by the pore scale,
some geological length scale, or a grid block for a regional model. All these possibilities
assume that a representative elementary volume can be defined in a way that ensures
that concentration is a well behaved and smooth variable. Typically when defining such
a concentration, it is assumed that geochemical processes occurring at the small scale are
reproduced at the larger scale, or that geochemical processes scale up in the simplest way.
This paper will show that this is not always true. Examples will be used to illustrate when
it is reasonable to assume that geochemical equilibrium processes are scale invariant.
Examples where conservative tracers appear to be non-conservative in upscaling systems
can be found in the literature. For example, Martin-Hayden and Robbins [1997] showed
that if concentrations are measured using monitoring wells with long well screens, an

1



2 Binning, Celia and Li

averaging takes place where clean and contaminated water are mixed to produce lower
concentration values. If these average concentrations are analysed with a contaminant
transport model, the modeller may erroneously conclude that biodegradation processes
are taking place.
Geochemists have long recognised the need to carefully evaluate the equilibrium as-
sumption. For example, Lichtner [1996] showed that there is some length and time scale
above which reaction kinetics can be ignored and geochemical equilibrium assumed. These
scales can be determined by the requirement that the Damköhler number be greater than
1 for local equilibrium, where the Damköhler number is defined to be the ratio between
a first order reaction rate, a length scale and the velocity Da = kL

v
.

Finally, macrokinetic behaviour is well known to occur in upscaled systems where equi-
librium sorption processes occur. For example, Miralles-Wilhelm and Gelhar [1996] show
how kinetic reaction terms arise in upscaled equations for heterogenous systems.
None of the previous authors have considered the possibility that similar pseudokinetic
behaviour occurs when upscaling groundwater systems where geochemical equilibrium is
known to occur at the small scale. This paper provides two examples to illustrate the
occurence of pseudokinetics. In both examples, the length scales are determined over
which psuedokinetic behaviour is observed.

2. RESULTS

The first example is at the pore scale, while the other considers an aquifer scale system.
Both examples consider calcite dissolution. A calcite and water system can be described
by the geochemical equilibrium and mass balance expressions:

CaCO3(s) 
 Ca
2+ + CO2−3 logK1 = −8.48 (1)

H2O
 H
+ +OH− logK2 = −14.0 (2)

HCO−3 
 H
+ + CO2−3 logK3 = −10.3 (3)

[H+] + 2[Ca2+] = [HCO−3 ] + 2[CO
2−
3 ] + [OH

−] (4)

[Ca2+] = [HCO−3 ] + [CO
2−
3 ] (5)

The system is characterised by 5 variables ([Ca2+], [CO2−3 ], [HCO
−
3 ], [H

+], [OH−]) and 5
equations. If the mineral calcite is present, then all five species are determined. In porous
media where calcite is not present, the calcite equilibrium equation (1) does not apply and
the system has one degree of freedom. In that case, transport processes determine the
concentrations of the five species. To fully describe the system it is therefore necessary
to describe the transport of only one of the 5 species as the others follow from the 4
remaining equilibrium expressions.

2.1. Pore scale psuedokinetics. The first example considers water flowing into a pore
of radius R. The pore walls are non-reactive at the upstream end and pure water flows
in the pore. At a certain point (z ≥ 0), the walls of the pore become calcite. Here
the concentration of the equilibrium species is determined downstream of the transition
(z ≥ 0). The distribution of the the five species can be determined using the Graetz-
Nusselt solution (see page 381 Bird et al. [2002]). This analytical solution was originally
developed to describe heat transfer in pipes, but can also be applied to the dissolution
problem described here as it is governed by the same equations. The Graetz-Nusselt
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solution employs the water continuity and water flow equations to describe the steady
state velocity distribution in the pipe:

(∇ ∙ v) = 0 (6)

ρ[v ∙ ∇v] = μ∇2v −∇P (7)

where v is the velocity, ρ the density and μ the viscosity and P = p+ ρgh the modified
pressure. The velocity is then given in cylindrical coordinates by (equation 2.3-18, Bird
et al. [2002]):

vz =
(Po −PL)R2

4μL

[

1−

(
r

R

)2]

(8)

wherePo is the characteristic pressure and PL is the modified pressure at some distance
z = L. The maximum velocity occurs in the center of the pore and is given by:

vz,max =
(Po −PL)R2

4μL
(9)

and the radially averaged velocity is defined to be

〈vz〉 =
1

A

∫ 2π

0

∫ R

0

vrdrdθ =
1

2
vz,max (10)

where A is the cross sectional area of the pore. The steady state distribution of contami-
nant mass is governed by the advection diffusion equation:

v ∙ ∇c−Do∇
2c = 0 (11)

where Do is the diffusion coefficient, subject to

c(z = 0) = c1 c(z =∞) = co c(r = R) = co
∂c

∂r
(r = 0) = 0 (12)

The solution is obtained after introduction of the following dimensionless variables:

Θ =
c− co
c1 − co

φ =
vz

〈vz〉
ξ =

r

R
ζ =

Doz

〈vz〉R2
(13)

Here c1 is the entrance concentration and co is the wall concentration. Neglecting diffusion
in the z-direction (it is much smaller than the advection), the equation can be written

φ
∂Θ

∂ζ
−
1

ξ

∂

∂ξ

(

ξ
∂Θ

∂ξ

)

= 0 (14)

where
φ = 2[1− ξ2] (15)

Separation of variables then gives:

Θ(ξ, ζ) = X(ξ)Z(ζ) (16)

∂Z

∂ζ
= −c2Z (17)

1

ξ

∂

∂ξ

(

ξ
∂X

∂ξ

)

+ c2φX = 0 (18)

Subject to
Z(0) = 1 Z(∞) = 0 X(1) = 0 X ′(0) = 0 (19)
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The solution is:

Z = e−c
2ζ (20)

X(ξ) =
i=∞∑

i=1

AiXi(ξ) (21)

where Xi(ξ) is an eigenfunction satisfying (18). The eigenfunctions satisfy the orthogo-
nality condition

∫ 1

0

ξφXiXjdξ = 0 i 6= j (22)

By applying the boundary condition at ζ = 0 we know that

i=∞∑

i=1

AiXi(ξ) = 1 (23)

Multiplying this by Xiξφ and applying the orthogonality condition (22), the unknown
coefficients can be determined as

Ai =

∫ 1
0
Xiξφdξ

∫ 1
0
X2i ξφdξ

(24)

The solution is shown in Figure 1 for a pore of radius 0.005 m, co = 1.1 × 10−4 mol/L
(the equilibrium concentration of Ca2+ in water in the presence of calcite), Do = 0.792×
10−9 m2/s (Ca2+ in water), Po−PL

L
= 0.001 Pa/m and μ = 1.0019 × 10−3 PaS. The

radially averaged concentration can be calculated directly from the solution and is shown
in Figure 2. For a pore of radius 0.005 m, the average velocity is 98m/yr and the average
concentration in the water reaches equilibrium after approximately 0.1 m. For distances
less than 0.1 m, the water within the pore is not at equilibrium. At the large (pore
averaged) scale, the solution takes time to reach equilibrium concentrations and this time
can be interpreted as ”psuedo-kinetics”, or kinetics that are not present in the actual
problem, but are artefacts of the averaging process.
The analytical solution can be used to calculate an equilibrium length scale for a given
pore radius R, where the equilibrium length scale is defined to be the distance a contam-
inant must be transported before geochemical equilibrium occurs in the macroscopically
averaged variable. When

ζ =
Doz

〈v〉R2
= 1 (25)

in (16), then 〈cz〉
co
= 0.99. Substituting the expression for 〈vz〉 given by (10) into (25), then

it can be seen that

Leq =
(Po −PL)R4

8μLDo
(26)

Calculations of Leq are shown in Figure 3 for various pore radii. It can be seen that
psuedo-kinetic effects are only significant for large pores. For example, for pore radii of 1
mm the equilibrium length scale is 0.16 mm.
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Figure 1. Concentration distribution of [Ca2+] in a pore as a function of
radial distance from the centre of the pore. Calcite is present on the pore
walls for z ≥ 0 where z is the distance along the main axis of the pore and
pure water enters the pore at z = 0

Figure 2. Average pore concentration (over r at a given cross section) of
the concentration distribution shown in figure 1.
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Figure 3. Distance that pore water must travel down a pore of radius R
before the average concentration reaches 99% of the equilibrium concentra-
tion for a pressure gradient Po−PL

L
= 0.001 Pa/m.

2.2. Aquifer scale psuedo kinetics. A similar approach can be used to obtain an
analytical solution on the aquifer scale. In that case, groundwater flows into an aquifer
with velocity v. At a point (z ≥ 0) the upper and lower aquifer boundaries change to
calcite. If these boundaries are separated by a distance B, then the concentration in the
aquifer at steady state can be determined by the solution of the equation:

v
dc

dx
−Dx

d2c

dx2
−Dz

d2c

dz2
= 0 (27)

where Dx and Dz are the dispersion coefficients in the x and z directions, subject to

c(0, z) = 0, c(∞, z) = ceq, c(x, 0) = ceq,
dc

dx
(x,B) = 0 (28)

The solution can be obtained by separation of variables and is given by

c(x, z) =
∞∑

n=0

An sin(cnz)e
mx (29)

where An =
4

(2n+1)π
, cn =

(2n+1)π
2B
, m = Pex

2B

[
1 −

√
1 + (2n+1)2π2

PexPez

]
, Pex =

vB
Dx
, Pez =

vB
Dz

Equilibrium length scales can be obtained in the same way as for the pore scale example. If
parameters similar to those of the Cape Cod Field experiment are used (v = 0.341m/day,
αL = 0.96m and αT = 0.018m, where Dx = αLv and Dz = αzv) [Garabedian et al, 1991],
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Figure 4. Distance that ground water must travel between calcite deposits
separated by 2B before the average concentration is 99% of equilibrium
(Symbols). Also shown is a ”mixing length” (no markers).

then the equilibrium length scales are shown for various aquifer thicknesses B in Figure 4.
The figure shows that if calcite layers are separated by a distance of 1m, then the system
does not come to equilibrium for 103m. For layers separated by 10m, the length scales are
approximately 10,000m. These calculations indicate that if calcite intrusions in an aquifer
are separated by any appreciable distance, then the aquifer cannot in practice be regarded
as being at equilibrium with calcite. To model this system a small scale equilibium model
or an upscaled psuedo-kinetic model is required.
The equilibrium length scales are related to mixing lengths. The mixing length can be
derived by noting that the dimensions of a contaminant plume are related to its variance√
2Dzt. If B = Lmix =

√
2Dzt and the time is given by the velocity and mixing length as

t = Lmix
v
, then Lmix =

B2

2αT
. As can be seen in Figure 4, the mixing length is approximately

equivalent to the equilibrium length.

3. CONCLUSIONS

Some simple analytical solutions have been used to show that upscaling can lead to the
appearance of psuedo-kinetic reactions in the macroscale variables and that psuedo kinetic
behaviour will occur at all scales. Equilibrium length scales are significant for large pores
and for aquifers where there is an appreciable distance between calcite inclusions. For
instance, an aquifer with transport parameters similar to those observed in the Cape Cod
field experiment and calcite intrusions separated by 10m, cannot be expected to come to
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equilibrium for many kilometers. Equilibrium length scales are related to mixing lengths
that have been discussed for many decades in the literature.
Psuedo kinetic reactions can be expected to occur whenever there is geological het-
erogeneity or concentration gradients. Modelling such systems is challenging because we
usually do not know the exact geometry of the geology. Without having a precise descrip-
tion of that geology it is not reasonable to assume geochemical equilibrium in contaminant
transport. Future work must focus on the statistical description of geochemical hetero-
geneity and the definition of upscaled equations. An approach similar to that employed
by Miralles-Wilhelm and Gelhar [1996] to upscale equilibrium sorption processes might
be fruitful.
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